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Aura advances in  
stratospheric water vapor

• Large-scale temperatures & transport 

• Microphysics & unresolved temperature 
fluctuations 

• Convection
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monthly avg. MLS V4; tropical average (25N-25S)
100 hPa
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monthly avg. MLS V4 vs. trajectory models

updated from Ye et al., ACP, 2018

correlation coefficients = 0.97 and 0.93



!13
Randel and Park, JGR, 2019

combined HALOE+Aura MLS H2O data set
60N-60S, 83 hPa, monthly anomalies

H2O_R is based on variations in cold-point temperatures from radiosondes
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QBO
Giorgetta & Bengtsson, JGR, 1999
Geller et al., JAS, 2002
Randel et al., JGR, 2000



�15

Yulaeva et al., JAS, 1994
Randel et al., JGR, 2006
Dhomse et al., ACP, 2008
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Enhanced

Yulaeva et al., JAS, 1994
Randel et al., JGR, 2006
Dhomse et al., ACP, 2008



�15

Enhanced

COOL

Yulaeva et al., JAS, 1994
Randel et al., JGR, 2006
Dhomse et al., ACP, 2008
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Warming troposphere

Geller et al., JAS, 2002
Davis et al., GRL, 2013
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WARM

Warming troposphere

Geller et al., JAS, 2002
Davis et al., GRL, 2013



Multivariate linear least-squares fit:
• H2O* = a QBO + b BD + c ΔT + r

�17Dessler et al., PNAS, 2013



Multivariate linear least-squares fit:
• H2O* = a QBO + b BD + c ΔT + r
• QBO = QBO index
• BD = tropical avg. 82-hPa heating rate anomaly
• ΔT = tropical tropospheric temperature anomaly

�17Dessler et al., PNAS, 2013



w
at

er
 v

ap
or

 a
no

m
al

ie
s

black: H2O simulation (MERRA trajectory)
blue: regression model

Dessler et al., JGR 2014

El
 C

hi
ch

on

Pi
na

tu
bo



w
at

er
 v

ap
or

 a
no

m
al

ie
s

black: H2O simulation (MERRA trajectory)
blue: regression model

Dessler et al., JGR 2014

El
 C

hi
ch

on

Pi
na

tu
bo



w
at

er
 v

ap
or

 a
no

m
al

ie
s

black: H2O simulation (MERRA trajectory)
blue: regression model

Dessler et al., JGR 2014

El
 C

hi
ch

on

Pi
na

tu
bo



w
at

er
 v

ap
or

 a
no

m
al

ie
s

black: H2O simulation (MERRA trajectory)
blue: regression model

Dessler et al., JGR 2014

El
 C

hi
ch

on

Pi
na

tu
bo



w
at

er
 v

ap
or

 a
no

m
al

ie
s

black: H2O simulation (MERRA trajectory)
blue: regression model

Dessler et al., JGR 2014

El
 C

hi
ch

on

Pi
na

tu
bo



w
at

er
 v

ap
or

 a
no

m
al

ie
s

black: H2O simulation (MERRA trajectory)
blue: regression model

Dessler et al., JGR 2014

El
 C

hi
ch

on

Pi
na

tu
bo

we see little trend in H2O
since the early 1980s
also Heggelin et al., Nat. Geosci., 2014



• Large-scale temperatures & transport 

• Microphysics & unresolved temperature 
fluctuations 
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Schoeberl et al., JGR, 2015; trajectories driven by MERRA2
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Aura MLS & CALIOP observations
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Schoeberl et al., JGR, 2015; trajectories driven by MERRA2
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!23Schoeberl et al., JGR, 2015; trajectories driven by MERRA2

trajectory model + cloud model
change nucleation RH

Ueyama et al., JGR, 2015 estimated 
microphysics added 0.7 ppmv at 100 hPa
consistent with Jensen et al., PNAS, 2013

ID: 3.2 ppmv
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!24Schoeberl et al., JGR, 2015; trajectories driven by MERRA

trajectory model + cloud model
unresolved change gravity waves
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a few tenths of a ppmv: Ueyama et al., 2013, 2014; 
Jensen and Pfister, 2004; T. Wang et al. 2015
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!26Schoeberl et al., JGR, 2015; trajectories driven by MERRA2

trajectory model + cloud model
change nucleation RH

ID: 3.2 ppmv

• Schoeberl et al. 2018: convection increases H2O 
averaged between 18-30 km by < 2%

• Ueyama et al. 2018: convection increases H2O at 100 
hPa by 15% during NH summer
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interannual variability in convection drives small 
changes in 100-hPa water vapor
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100 hPa zonal avg. seasonal cycle
2004-2018

MLS data
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100 hPa zonal avg. seasonal cycle
2004-2018

MLS data

the asymmetry
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MLS observations standard trajectory model
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MLS observations standard trajectory model

Can we add convection to this model?
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Conclusions
• Aura’s measurements have greatly 

improved our understanding of the TTL
• Large-scale temperatures & transport 

are primary regulator of stratospheric 
humidity

• Microphysics increases humidity by ≈1 
ppmv (~25%)

• Convection not too important, but could 
be regionally important in the lower 
stratosphere �35


